Show simple item record

dc.contributor.authorYu, Shaoliang
dc.contributor.authorQiu, Xiaokang
dc.contributor.authorZuo, Haijie
dc.contributor.authorTurduev, M
dc.contributor.authorGu, Tian
dc.contributor.authorHu, Juejun
dc.date.accessioned2020-10-16T21:19:36Z
dc.date.available2020-10-16T21:19:36Z
dc.date.issued2020-04
dc.identifier.issn0733-8724
dc.identifier.issn1558-2213
dc.identifier.urihttps://hdl.handle.net/1721.1/128032
dc.description.abstractWe propose and experimentally demonstrate a broadband, polarization-diverse compact bending design for low-index-contrast waveguides, where light is re-directed via total internal reflection (TIR) on an air-trench quadratic (elliptical or parabolic) reflector surface. Compared to prior work based on flat TIR mirrors, the quadratic reflector design contributes to minimized mode leakage and reduced optical losses, enabling high-density, scalable photonic architectures at the chip and board levels. Moreover, we develop a self-aligned fabrication process where the reflector and the waveguide segments are defined in a single lithography step, thereby circumventing the alignment sensitivity issue common to traditional air trench structures. Our simulations predict bending losses down to <0.14 dB per 90° and 180° bend at 850 nm wavelength, and we experimentally measure broadband losses of ∼0.3 dB per 90° and 180° bend for both TE and TM polarizations in structures fabricated using standard UV lithography.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JLT.2020.2986576en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Hu via Ye Lien_US
dc.titleCompact and Fabrication-Tolerant Waveguide Bends Based on Quadratic Reflectorsen_US
dc.typeArticleen_US
dc.identifier.citationYu, Shaoliang et al. "Compact and Fabrication-Tolerant Waveguide Bends Based on Quadratic Reflectors." Journal of Lightwave Technology 38, 16 (August 2020): 4368 - 4373 © 2020 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Materials Research Laboratoryen_US
dc.relation.journalJournal of Lightwave Technologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-10-06T14:39:35Z
dspace.orderedauthorsYu, S; Qiu, X; Zuo, H; Turduev, M; Gu, T; Hu, Jen_US
dspace.date.submission2020-10-06T14:39:40Z
mit.journal.volume38en_US
mit.journal.issue16en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record