MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips

Author(s)
Du, Qingyang; Michon, Jerome; Li, Bingzhao; Kita, Derek M.; Ma, Danhao; Zuo, Haijie; Yu, Shaoliang; Gu, Tian; Agarwal, Anuradha; Li, Mo; Hu, Juejun; ... Show more Show less
Thumbnail
DownloadAccepted version (612.0Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Integrated photonics is poised to become a mainstream solution for high-speed data communications and sensing in harsh radiation environments, such as outer space, high-energy physics facilities, nuclear power plants, and test fusion reactors. Understanding the impact of radiation damage in optical materials and devices is thus a prerequisite to building radiation-hard photonic systems for these applications. In this paper, we report real-time, in situ analysis of radiation damage in integrated photonic devices. The devices, integrated with an optical fiber array package and a baseline-correction temperature sensor, can be remotely interrogated while exposed to ionizing radiation over a long period without compromising their structural and optical integrity. We also introduce a method to deconvolve the radiation damage responses from different constituent materials in a device. The approach was implemented to quantify gamma radiation damage and post-radiation relaxation behavior of SiO2-cladded SiC photonic devices. Our findings suggest that densification induced by Compton scattering displacement defects is the primary mechanism for the observed index change in SiC. Additionally, post-radiation relaxation in amorphous SiC does not restore the original pre-irradiated structural state of the material. Our results further point to the potential of realizing radiation-hard photonic device designs taking advantage of the opposite signs of radiation-induced index changes in SiC and SiO2.
Date issued
2020-01
URI
https://hdl.handle.net/1721.1/128110
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Materials Research Laboratory
Journal
Photonics Research
Publisher
Optical Society of America (OSA)
Citation
Du, Qingyang et al. "Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips." Photonics Research 8, 2 (January 2020): 186-193 © 2020 Chinese Laser Press
Version: Author's final manuscript
ISSN
2327-9125

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.