MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells

Author(s)
Kim, Yoonseob; Wang, Yanming; France-Lanord, Arthur; Wang, Yichong; Wu, You-Chi Mason; Lin, Sibo; Li, Yifan; Grossman, Jeffrey C.; Swager, Timothy M; ... Show more Show less
Thumbnail
DownloadAccepted version (2.563Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A major challenge in the development of anion exchange membranes for fuel cells is the design and synthesis of highly stable (chemically and mechanically) conducting membranes. Membranes that can endure highly alkaline environments while rapidly transporting hydroxides are desired. Herein, we present a design using cross-linked polymer membranes containing ionic highways along charge-delocalized pyrazolium cations and homoconjugated triptycenes. These ionic highway membranes show improved performance. Specifically, a conductivity of 111.6 mS cm-1 at 80 °C was obtained with a low 7.9% water uptake and 0.91 mmol g-1 ion exchange capacity. In contrast to existing materials, ionic highways produce higher conductivities at reduced hydration and ionic exchange capacities. The membranes retain more than 75% of their initial conductivity after 30 days of an alkaline stability test. The formation of ionic highways for ion transport is confirmed by density functional theory and Monte Carlo studies. A single cell with platinum metal catalysts at 80 °C showed a high peak density of 0.73 W cm-2 (0.45 W cm-2 from a silver-based cathode) and stable performance throughout 400 h tests.
Date issued
2019-11
URI
https://hdl.handle.net/1721.1/128148
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Kim, Yoonseob et al. "Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells." Journal of the American Chemical Society 141, 45 (November 2019): 18152–18159 © 2019 American Chemical Society
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.