dc.contributor.author | Skorupskii, Grigorii | |
dc.contributor.author | Trump, Benjamin A. | |
dc.contributor.author | Kasel, Thomas W. | |
dc.contributor.author | Brown, Craig M. | |
dc.contributor.author | Hendon, Christopher H. | |
dc.contributor.author | Dinca, Mircea | |
dc.date.accessioned | 2020-10-26T19:29:01Z | |
dc.date.available | 2020-10-26T19:29:01Z | |
dc.date.issued | 2019-11 | |
dc.date.submitted | 2018-10 | |
dc.identifier.issn | 1755-4330 | |
dc.identifier.issn | 1755-4349 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/128205 | |
dc.description.abstract | The emergence of electrically conductive metal–organic frameworks (MOFs) has led to applications in chemical sensing and electrical energy storage, among others. The most conductive MOFs are made from organic ligands and square-planar transition metal ions connected into two-dimensional (2D) sheets stacked on top of each other. Their electrical properties are thought to depend critically on the covalency of the metal–ligand bond, and less importance is given to out-of-plane charge transport. Here, we report a series of lanthanide-based MOFs that allow fine tuning of the sheet stacking. In these materials, the Ln3+ ions lie between the planes of the ligands, thus connecting organic layers into a 3D framework through lanthanide–oxygen chains. Here, efficient charge transport is found to occur primarily perpendicular to the 2D sheets. These results demonstrate that high conductivity in layered MOFs does not necessarily require a metal–ligand bond with highly covalent character, and that interactions between organic ligands alone can produce efficient charge transport pathways. | en_US |
dc.description.sponsorship | Army Research Office (Grant W911NF-17-1-0174) | en_US |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/s41557-019-0372-0 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Prof. Dinca via Ye Li | en_US |
dc.title | Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Skorupskii, Grigorii et al. "Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks." Nature Chemistry 12, 2 (November 2019): 131–136 © 2019 The Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.relation.journal | Nature Chemistry | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-10-21T14:44:01Z | |
dspace.orderedauthors | Skorupskii, G; Trump, BA; Kasel, TW; Brown, CM; Hendon, CH; Dincă, M | en_US |
dspace.date.submission | 2020-10-21T14:44:06Z | |
mit.journal.volume | 12 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Complete | |