MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal–Organic Framework

Author(s)
Miner, Elise Marie; Park, Sarah Sunah; Dinca, Mircea
Thumbnail
DownloadAccepted version (793.7Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A Cu-azolate metal-organic framework (MOF) uptakes stoichiometric loadings of Groups 1 and 2 metal halides, demonstrating efficient reversible release and reincorporation of immobilized anions within the framework. Ion-pairing interactions lead to anion-dependent Li+ and Mg2+ transport in Cu4(ttpm)2·0.6CuCl2, whose high surface area affords a high density of uniformly distributed mobile metal cations and halide binding sites. The ability to systematically tune the ionic conductivity yields a solid electrolyte with a Mg2+ ion conductivity rivaling the best materials reported to date. This MOF is one of the first in a promising class of frameworks that introduces the opportunity to control the identity, geometry, and distribution of the cation hopping sites, offering a versatile template for application-directed design of solid electrolytes.
Date issued
2019-02
URI
https://hdl.handle.net/1721.1/128207
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Miner, Elise Marie et al. "High Li+ and Mg2+ Conductivity in a Cu-Azolate Metal–Organic Framework." Journal of the American Chemical Society 141, 10 (February 2019): 4422–4427 © 2019 American Chemical Society
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.