dc.contributor.author | Xie, Lilia S. | |
dc.contributor.author | Park, Sarah Sunah | |
dc.contributor.author | Chmielewski, Michał J. | |
dc.contributor.author | Liu, Hanyu | |
dc.contributor.author | Kharod, Ruby A. | |
dc.contributor.author | Yang, Luming | |
dc.contributor.author | Campbell, Michael Glenn | |
dc.contributor.author | Dinca, Mircea | |
dc.date.accessioned | 2020-10-26T20:41:49Z | |
dc.date.available | 2020-10-26T20:41:49Z | |
dc.date.issued | 2020-05 | |
dc.date.submitted | 2020-03 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/128209 | |
dc.description.abstract | The extension of reticular chemistry concepts to electrically conductive three-dimensional metal–organic frameworks (MOFs) has been challenging, particularly for cases in which strong interactions between electroactive linkers create the charge transport pathways. Here, we report the successful replacement of tetrathiafulvalene (TTF) with a nickel glyoximate core in a family of isostructural conductive MOFs with Mn2+, Zn2+, and Cd2+. Different coordination environments of the framework metals lead to variations in the linker stacking geometries and optical properties. Single-crystal conductivity data are consistent with charge transport along the linker stacking direction, with conductivity values only slightly lower than those reported for the analogous TTF materials. These results serve as a case study demonstrating how reticular chemistry design principles can be extended to conductive frameworks with significant intermolecular contacts. | en_US |
dc.description.sponsorship | U.S. Department of Energy, Basic Energy Sciences (Grant DE-SC0018235) | en_US |
dc.language.iso | en | |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1002/anie.202004697 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Prof. Dinca via Ye Li | en_US |
dc.title | Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Through‐Space Transport Pathways | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Xie, Lilia S. et al. "Isoreticular Linker Substitution in Conductive Metal–Organic Frameworks with Through‐Space Transport Pathways." Angewandte Chemie - International Edition 59, 44 (May 2020): 19623-19626 © 2020 Wiley | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.relation.journal | Angewandte Chemie - International Edition | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-10-21T15:11:54Z | |
dspace.orderedauthors | Xie, LS; Park, SS; Chmielewski, MJ; Liu, H; Kharod, RA; Yang, L; Campbell, MG; Dincă, M | en_US |
dspace.date.submission | 2020-10-21T15:12:04Z | |
mit.journal.volume | 59 | en_US |
mit.journal.issue | 44 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Complete | |