Show simple item record

dc.contributor.authorCao, Jianshu
dc.contributor.authorCogdell, Richard J.
dc.contributor.authorCoker, David F.
dc.contributor.authorDuan, Hong-Guang
dc.contributor.authorHauer, Jürgen
dc.contributor.authorKleinekathöfer, Ulrich
dc.contributor.authorJansen, Thomas L. C.
dc.contributor.authorMančal, Tomáš
dc.contributor.authorMiller, R. J. Dwayne
dc.contributor.authorOgilvie, Jennifer P.
dc.contributor.authorProkhorenko, Valentyn I.
dc.contributor.authorRenger, Thomas
dc.contributor.authorTan, Howe-Siang
dc.contributor.authorTempelaar, Roel
dc.contributor.authorThorwart, Michael
dc.contributor.authorThyrhaug, Erling
dc.contributor.authorWestenhoff, Sebastian
dc.contributor.authorZigmantas, Donatas
dc.date.accessioned2020-10-28T21:14:28Z
dc.date.available2020-10-28T21:14:28Z
dc.date.issued2020-04
dc.date.submitted2019-09
dc.identifier.issn2375-2548
dc.identifier.urihttps://hdl.handle.net/1721.1/128232
dc.description.abstractPhotosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/sciadv.aaz4888en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleQuantum biology revisiteden_US
dc.typeArticleen_US
dc.identifier.citationCao, Jianshu et al. "Quantum biology revisited." Science Advances 6, 14 (April 2020): eaaz4888 © 2020 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-14T18:41:32Z
dspace.date.submission2020-09-14T18:41:35Z
mit.journal.volume6en_US
mit.journal.issue14en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record