Show simple item record

dc.contributor.authorWatts, Adam Bene
dc.contributor.authorHarrow, Aram W.
dc.contributor.authorKanwar, Gurtej S.
dc.date.accessioned2020-10-29T15:43:16Z
dc.date.available2020-10-29T15:43:16Z
dc.date.issued2019-01
dc.identifier.isbn9783959770958
dc.identifier.urihttps://hdl.handle.net/1721.1/128244
dc.description.abstractEntangled games are a quantum analog of constraint satisfaction problems and have had important applications to quantum complexity theory, quantum cryptography, and the foundations of quantum mechanics. Given a game, the basic computational problem is to compute its entangled value: the supremum success probability attainable by a quantum strategy. We study the complexity of computing the (commuting-operator) entangled value ω∗ of entangled XOR games with any number of players. Based on a duality theory for systems of operator equations, we introduce necessary and sufficient criteria for an XOR game to have ω∗ = 1, and use these criteria to derive the following results: 1. An algorithm for symmetric games that decides in polynomial time whether ω∗ = 1 or ω∗ < 1, a task that was not previously known to be decidable, together with a simple tensor-product strategy that achieves value 1 in the former case. The only previous candidate algorithm for this problem was the Navascués-Pironio-Acín (also known as noncommutative Sum of Squares or ncSoS) hierarchy, but no convergence bounds were known. 2. A family of games with three players and with ω∗ < 1, where it takes doubly exponential time for the ncSoS algorithm to witness this. By contrast, our algorithm runs in polynomial time. 3. Existence of an unsatisfiable phase for random (non-symmetric) XOR games. We show that there exists a constant Ckunsat depending only on the number k of players, such that a random k-XOR game over an alphabet of size n has ω∗ < 1 with high probability when the number of clauses is above Ckunsat n. 4. A lower bound of Ω(n log(n)/ log log(n)) on the number of levels in the ncSoS hierarchy required to detect unsatisfiability for most random 3-XOR games. This is in contrast with the classical case where the (3n)th level of the sum-of-squares hierarchy is equivalent to brute-force enumeration of all possible solutions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1700168)en_US
dc.language.isoen
dc.publisherSchloss Dagstuhl, Leibniz Center for Informaticsen_US
dc.relation.isversionof10.4230/LIPIcs.ITCS.2019.10en_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceDROPSen_US
dc.titleAlgorithms, bounds, and strategies for entangled XOR gamesen_US
dc.typeArticleen_US
dc.identifier.citationWatts, Adam Bene et al. “Algorithms, bounds, and strategies for entangled XOR games.” Leibniz International Proceedings in Informatics, LIPIcs, 124, 10, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, CA: 1-18 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalLeibniz International Proceedings in Informatics, LIPIcsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-10-27T13:29:51Z
dspace.orderedauthorsWatts, AB; Harrow, AW; Kanwar, G; Natarajan, Aen_US
dspace.date.submission2020-10-27T13:30:00Z
mit.journal.volume124en_US
mit.journal.issue10en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record