Show simple item record

dc.contributor.authorChristiansen, Rasmus E
dc.contributor.authorLin, Zin
dc.contributor.authorRoques-Carmes, Charles
dc.contributor.authorSalamin, Yannick
dc.contributor.authorKooi, Steven E
dc.contributor.authorJoannopoulos, John
dc.contributor.authorSoljacic, Marin
dc.contributor.authorJohnson, Steven G
dc.date.accessioned2020-10-29T18:32:28Z
dc.date.available2020-10-29T18:32:28Z
dc.date.issued2020-10
dc.date.submitted2020-09
dc.identifier.issn1094-4087
dc.identifier.urihttps://hdl.handle.net/1721.1/128249
dc.description.abstractWe demonstrate new axisymmetric inverse-design techniques that can solve problems radically different from traditional lenses, including reconfigurable lenses (that shift a multi-frequency focal spot in response to refractive-index changes) and widely separated multi-wavelength lenses (λ = 1 µm and 10 µm). We also present experimental validation for an axisymmetric inverse-designed monochrome lens in the near-infrared fabricated via two-photon polymerization. Axisymmetry allows fullwave Maxwell solvers to be scaled up to structures hundreds or even thousands of wavelengths in diameter before requiring domain-decomposition approximations, while multilayer topology optimization with ∼10[superscript 5] degrees of freedom can tackle challenging design problems even when restricted to axisymmetric structures.en_US
dc.description.sponsorshipArmy Research Office (Grant W911NF-18-2-0048)en_US
dc.publisherOptical Society of America (OSA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/oe.403192en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOSA Publishingen_US
dc.titleFullwave Maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalensesen_US
dc.typeArticleen_US
dc.identifier.citationChristiansen, Rasmus E. et al. "Fullwave Maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses." Optics Express 28, 23 (October 2020): 33854-33868 © 2020 Optical Society of Americaen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.relation.journalOptics Expressen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2020-10-27T22:50:12Z
mit.journal.volume28en_US
mit.journal.issue23en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record