Show simple item record

dc.contributor.authorJiang, Yuxuan
dc.contributor.authorLiang, Xudong
dc.contributor.authorGuo, Ming
dc.contributor.authorCao, Yanping
dc.contributor.authorCai, Shengqiang
dc.date.accessioned2020-11-06T22:52:22Z
dc.date.available2020-11-06T22:52:22Z
dc.date.issued2018-05
dc.date.submitted2018-01
dc.identifier.issn1617-7940
dc.identifier.urihttps://hdl.handle.net/1721.1/128422
dc.description.abstractMost bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event. ©2018 Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.description.sponsorshipNatural Science Foundation of China (11572179)en_US
dc.description.sponsorshipNatural Science Foundation of China (11432008)en_US
dc.language.isoen
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/S10237-018-1019-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceother univ websiteen_US
dc.titleFracture mechanics modeling of popping event during daughter cell separationen_US
dc.typeArticleen_US
dc.identifier.citationJiang, Yuxuan et al., "Fracture mechanics modeling of popping event during daughter cell separation." Biomechanics and Modeling in Mechanobiology 17, 4 (May 2018): 1131–1137 ©2018 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalBiomechanics and Modeling in Mechanobiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-07-17T17:27:00Z
dspace.date.submission2020-07-17T17:27:02Z
mit.journal.volume17en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record