MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Floral signals evolve in a predictable way under artificial and pollinator selection in Brassica rapa

Author(s)
Zu, Pengjuan; Schiestl, Florian P.; Gervasi, Daniel; Li, Xin; Runcie, Daniel; Guillaume, Frédéric; ... Show more Show less
Thumbnail
Download12862_2020_Article_1692.pdf (691.3Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background Angiosperms employ an astonishing variety of visual and olfactory floral signals that are generally thought to evolve under natural selection. Those morphological and chemical traits can form highly correlated sets of traits. It is not always clear which of these are used by pollinators as primary targets of selection and which would be indirectly selected by being linked to those primary targets. Quantitative genetics tools for predicting multiple traits response to selection have been developed since long and have advanced our understanding of evolution of genetically correlated traits in various biological systems. We use these tools to predict the evolutionary trajectories of floral traits and understand the selection pressures acting on them. Results We used data from an artificial selection and a pollinator (bumblebee, hoverfly) evolution experiment with fast cycling Brassica rapa plants to predict evolutionary changes of 12 floral volatiles and 4 morphological floral traits in response to selection. Using the observed selection gradients and the genetic variance-covariance matrix (G-matrix) of the traits, we showed that the observed responses of most floral traits including volatiles were predicted in the right direction in both artificial- and bumblebee-selection experiment. Genetic covariance had a mix of constraining and facilitating effects on evolutionary responses. We further revealed that G-matrices also evolved in the selection processes. Conclusions Overall, our integrative study shows that floral signals, especially volatiles, evolve under selection in a mostly predictable way, at least during short term evolution. Evolutionary constraints stemming from genetic covariance affected traits evolutionary trajectories and thus it is important to include genetic covariance for predicting the evolutionary changes of a comprehensive suite of traits. Other processes such as resource limitation and selfing also need to be considered for a better understanding of floral trait evolution.
Date issued
2020-09
URI
https://hdl.handle.net/1721.1/128432
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
BMC Evolutionary Biology
Publisher
Springer Science and Business Media LLC
Citation
Zu, Pengjuan et al. "Floral signals evolve in a predictable way under artificial and pollinator selection in Brassica rapa." BMC Evolutionary Biology 20, 1 (September 2020): 127 © 2020 The Author(s)
Version: Final published version
ISSN
1471-2148

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.