Show simple item record

dc.contributor.authorAkitaya, Hugo A.
dc.contributor.authorDemaine, Erik D
dc.contributor.authorHesterberg, Adam Classen
dc.contributor.authorLiu, Quanquan C.
dc.date.accessioned2020-11-10T15:48:33Z
dc.date.available2020-11-10T15:48:33Z
dc.date.issued2018-01
dc.identifier.isbn9783319739144
dc.identifier.isbn9783319739151
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/128437
dc.description.abstractWe analyze a directed variation of the book embedding problem when the page partition is prespecified and the nodes on the spine must be in topological order (upward book embedding). Given a directed acyclic graph and a partition of its edges into k pages, can we linearly order the vertices such that the drawing is upward (a topological sort) and each page avoids crossings? We prove that the problem is NP-complete for K ≥ 3, and for K ≥ 4 even in the special case when each page is a matching. By contrast, the problem can be solved in linear time for k = 2 pages when pages are restricted to matchings. The problem comes from Jack Edmonds (1997), motivated as a generalization of the map folding problem from computational origami.en_US
dc.description.sponsorshipNSF (Award CCF-1422311)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-73915-1_18en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUpward Partitioned Book Embeddingsen_US
dc.typeBooken_US
dc.identifier.citationAkitaya, Hugo A. et al. "Upward Partitioned Book Embeddings." International Symposium on Graph Drawing and Network Visualization, September 2018, Barcelona, Spain, Springer International Publishing, January 2018. © 2018 Springer International Publishing AGen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalInternational Symposium on Graph Drawing and Network Visualizationen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-07T18:18:45Z
dspace.date.submission2019-06-07T18:18:46Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record