Show simple item record

dc.contributor.authorDelPreto, Joseph Jeff
dc.contributor.authorSalazar Gomez, Andres Felipe
dc.contributor.authorGil, Stephanie
dc.contributor.authorHasani, Ramin
dc.contributor.authorGuenther, Frank H
dc.contributor.authorRus, Daniela L
dc.date.accessioned2020-11-12T20:16:48Z
dc.date.available2020-11-12T20:16:48Z
dc.date.issued2020-08
dc.date.submitted2018-12
dc.identifier.issn0929-5593
dc.identifier.issn1573-7527
dc.identifier.urihttps://hdl.handle.net/1721.1/128462
dc.description.abstractEffective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brain activity acquired via EMG and EEG, respectively. It presents continuous classification of left and right hand-gestures using muscle signals, time-locked classification of error-related potentials using brain signals (unconsciously produced when observing an error), and a framework that combines these pipelines to detect and correct robot mistakes during multiple-choice tasks. The resulting hybrid system is evaluated in a “plug-and-play” fashion with 7 untrained subjects supervising an autonomous robot performing a target selection task. Offline analysis further explores the EMG classification performance, and investigates methods to select subsets of training data that may facilitate generalizable plug-and-play classifiers.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10514-020-09916-xen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titlePlug-and-play supervisory control using muscle and brain signals for real-time gesture and error detectionen_US
dc.typeArticleen_US
dc.identifier.citationDelPreto, Joseph et al. "Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection." Autonomous Robots (August 2020): 1303–1322 © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalAutonomous Robotsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-08-10T03:16:31Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-08-10T03:16:31Z
mit.journal.volume44en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record