Optimistic gittins indices
Author(s)
Gutin, Eli; Farias, Vivek F.
Download6036-optimistic-gittins-indices.pdf (1.769Mb)
Terms of use
Metadata
Show full item recordAbstract
Starting with the Thomspon sampling algorithm, recent years have seen a resurgence of interest in Bayesian algorithms for the Multi-armed Bandit (MAB) problem. These algorithms seek to exploit prior information on arm biases and while several have been shown to be regret optimal, their design has not emerged from a principled approach. In contrast, if one cared about Bayesian regret discounted over an infinite horizon at a fixed, pre-specified rate, the celebrated Gittins index theorem offers an optimal algorithm. Unfortunately, the Gittins analysis does not appear to carry over to minimizing Bayesian regret over all sufficiently large horizons and computing a Gittins index is onerous relative to essentially any incumbent index scheme for the Bayesian MAB problem. The present paper proposes a sequence of 'optimistic' approximations to the Gittins index. We show that the use of these approximations in concert with the use of an increasing discount factor appears to offer a compelling alternative to state-of-the-art index schemes proposed for the Bayesian MAB problem in recent years by offering substantially improved performance with little to no additional computational overhead. In addition, we prove that the simplest of these approximations yields frequentist regret that matches the Lai-Robbins lower bound, including achieving matching constants.
Date issued
2016-12Department
Sloan School of Management; Massachusetts Institute of Technology. Operations Research CenterJournal
Advances in Neural Information Processing Systems 29 (NIPS 2016)
Publisher
NIPS Foundation
Citation
Gutin, Eli and Vivek F. Farias. "Optimistic gittins indices." Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, NIPS Foundation, December 2016. © 2016 NIPS Foundation
Version: Final published version