MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From micro to nano: evolution and impact of drug delivery in treating disease

Author(s)
Hrkach, Jeff; Langer, Robert S
Thumbnail
Download13346_2020_769_ReferencePDF.pdf (682.0Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Over the past 50 years, drug delivery breakthroughs have enabled the approval of several important medicines. Often, this path starts with innovation from academic collaborations amongst biologists, chemists, and engineers, followed by the formation of a start-up company driving clinical translation and approval. An early wave featured injectable (i.e., intramuscular, subcutaneous) biodegradable polymeric microspheres to control drug release profiles for peptides and small molecules (e.g., Lupron Depot®, Risperdal Consta®). With these early successes for microspheres, research shifted to exploring systemic delivery by intravenous injection, which required smaller particle sizes and modified surface properties (e.g., PEGylation) to enable long circulation times. These new innovations resulted in the nanoparticle medicines Doxil® and Abraxane®, designed to improve the therapeutic index of cytotoxic cancer agents by decreasing systemic exposure and delivering more drug to tumors. Very recently, the first siRNA lipid nanoparticle medicine, Patisiran (Onpattro®), was approved for treating hereditary transthyretin-mediated amyloidosis. In this inspirational note, we will highlight the technological evolution of drug delivery from micro- to nano-, citing some of the approved medicines demonstrating the significant impact of the drug delivery field in treating many diseases.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/128504
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Drug Delivery and Translational Research
Publisher
Springer Science and Business Media LLC
Citation
Hrkach, Jeff and Robert Langer. "From micro to nano: evolution and impact of drug delivery in treating disease." Drug Delivery and Translational Research 10, 3 (May 2020): 567–570 © 2020 Controlled Release Society
Version: Author's final manuscript
ISSN
2190-393X
2190-3948

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.