High permeability sub-nanometre sieve composite MoS2 membranes
Author(s)
Sapkota, Bedanga; Liang, Wentao; VahidMohammadi, Armin; Karnik, Rohit; Noy, Aleksandr; Wanunu, Meni; ... Show more Show less
DownloadPublished version (1.302Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Two-dimensional membranes have gained enormous interest due to their potential to deliver precision filtration of species with performance that can challenge current desalination membrane platforms. Molybdenum disulfide (MoS2) laminar membranes have recently demonstrated superior stability in aqueous environment to their extensively-studied analogs graphene-based membranes; however, challenges such as low ion rejection for high salinity water, low water flux, and low stability over time delay their potential adoption as a viable technology. Here, we report composite laminate multilayer MoS2 membranes with stacked heterodimensional one- to two-layer-thick porous nanosheets and nanodisks. These membranes have a multimodal porous network structure with tunable surface charge, pore size, and interlayer spacing. In forward osmosis, our membranes reject more than 99% of salts at high salinities and, in reverse osmosis, small-molecule organic dyes and salts are efficiently filtered. Finally, our membranes stably operate for over a month, implying their potential for use in commercial water purification applications.
Date issued
2020-06Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Sapkota, Bedanga et al. "High permeability sub-nanometre sieve composite MoS2 membranes." Nature Communications 11, 1 (June 2020): 2747 © 2020 The Author(s).
Version: Final published version
ISSN
2041-1723