Show simple item record

dc.contributor.authorBroderick, Tamara A
dc.contributor.authorWilson, Ashia
dc.contributor.authorJordan, Michael
dc.date.accessioned2020-11-25T20:40:58Z
dc.date.available2020-11-25T20:40:58Z
dc.date.issued2018-11
dc.identifier.issn1350-7265
dc.identifier.urihttps://hdl.handle.net/1721.1/128659
dc.description.abstractWe demonstrate how to calculate posteriors for general Bayesian nonparametric priors and likelihoods based on completely random measures (CRMs). We further show how to represent Bayesian nonparametric priors as a sequence of finite draws using a size-biasing approach – and how to represent full Bayesian nonparametric models via finite marginals. Motivated by conjugate priors based on exponential family representations of likelihoods, we introduce a notion of exponential families for CRMs, which we call exponential CRMs. This construction allows us to specify automatic Bayesian nonparametric conjugate priors for exponential CRM likelihoods. We demonstrate that our exponential CRMs allow particularly straightforward recipes for size-biased and marginal representations of Bayesian nonparametric models. Along the way, we prove that the gamma process is a conjugate prior for the Poisson likelihood process and the beta prime process is a conjugate prior for a process we call the odds Bernoulli process. We deliver a size-biased representation of the gamma process and a marginal representation of the gamma process coupled with a Poisson likelihood process.en_US
dc.description.sponsorshipOffice of Naval Research (Grant N00014-11-1-0688)en_US
dc.language.isoen
dc.publisherBernoulli Society for Mathematical Statistics and Probabilityen_US
dc.relation.isversionofhttp://dx.doi.org/10.3150/16-bej855en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePosteriors, conjugacy, and exponential families for completely random measuresen_US
dc.typeArticleen_US
dc.identifier.citationBroderick, Tamara et al. "Posteriors, conjugacy, and exponential families for completely random measures." Bernoulli 24, 4B (November 2018): 3181-3221 © 2018 ISI/BSen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.relation.journalBernoullien_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-10T16:38:23Z
dspace.date.submission2019-05-10T16:38:24Z
mit.journal.volume24en_US
mit.journal.issue4Ben_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record