Show simple item record

dc.contributor.authorHodos, Rachel
dc.contributor.authorZhang, Ping
dc.contributor.authorLee, Hao-Chih
dc.contributor.authorDuan, Qiaonan
dc.contributor.authorWang, Zichen
dc.contributor.authorClark, Neil R.
dc.contributor.authorMa’ayan, Avi
dc.contributor.authorWang, Fei
dc.contributor.authorKidd, Brian
dc.contributor.authorHu, Jianying
dc.contributor.authorSontag, David Alexander
dc.contributor.authorDudley, Joel
dc.date.accessioned2020-11-25T22:07:16Z
dc.date.available2020-11-25T22:07:16Z
dc.date.issued2018-01
dc.date.submitted2017-11
dc.identifier.isbn9789813235526
dc.identifier.isbn9789813235533
dc.identifier.urihttps://hdl.handle.net/1721.1/128664
dc.description.abstractGene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.en_US
dc.language.isoen
dc.publisherWorld Scientificen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/9789813235533_0004en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceWorld Scientificen_US
dc.titleCell-specific prediction and application of drug-induced gene expression profilesen_US
dc.typeArticleen_US
dc.identifier.citationHodos, Rachel et al. "Cell-specific prediction and application of drug-induced gene expression profiles." Pacific Symposium on Biocomputing, January 2018, Kohala Coast, Hawaii, World Scientific, January 2018 © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.relation.journalPacific Symposium on Biocomputingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-03T15:14:21Z
dspace.date.submission2019-07-03T15:14:22Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record