MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Light-induced charge density wave in LaT₃

Author(s)
Kogar, Anshul; Zong, Alfred; Bie, Yaqing; Wang, Xirui; Rohwer, Timm; Yang, Yafang; Jarillo-Herrero, Pablo; Gedik, Nuh; ... Show more Show less
Thumbnail
DownloadSubmitted version (7.170Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
When electrons in a solid are excited by light, they can alter the free energy landscape and access phases of matter that are out of reach in thermal equilibrium. This accessibility becomes important in the presence of phase competition, when one state of matter is preferred over another by only a small energy scale that, in principle, is surmountable by the excitation. Here, we study a layered compound, LaTe3, where a small lattice anisotropy in the a–c plane results in a unidirectional charge density wave (CDW) along the c axis1,2. Using ultrafast electron diffraction, we find that, after photoexcitation, the CDW along the c axis is weakened and a different competing CDW along the a axis subsequently emerges. The timescales characterizing the relaxation of this new CDW and the reestablishment of the original CDW are nearly identical, which points towards a strong competition between the two orders. The new density wave represents a transient non-equilibrium phase of matter with no equilibrium counterpart, and this study thus provides a framework for discovering similar states of matter that are ‘trapped’ under equilibrium conditions.
Date issued
2019-11
URI
https://hdl.handle.net/1721.1/128670
Department
Massachusetts Institute of Technology. Department of Physics; MIT Materials Research Laboratory
Journal
Nature Physics
Publisher
Springer Science and Business Media LLC
Citation
Kogar, Anshul et al. “Light-induced charge density wave in LaT₃.” Nature Physics, 16, 2 (November 2019): 159–163 © 2019 The Author(s)
Version: Original manuscript
ISSN
1745-2473

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.