MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovery of the soft electronic modes of the trimeron order in magnetite

Author(s)
Baldini, Edoardo; Belvin, Carina Aiello; Ozel, Ilkem Ozge; Fiete, Gregory; Gedik, Nuh
Thumbnail
DownloadSubmitted version (6.326Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The Verwey transition in magnetite (Fe3O4) is the first metal–insulator transition ever observed1 and involves a concomitant structural rearrangement and charge–orbital ordering. Owing to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons2. However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings shed new light on the cooperative mechanism at the origin of magnetite’s exotic ground state.
Date issued
2020-01
URI
https://hdl.handle.net/1721.1/128671
Department
MIT Materials Research Laboratory; Massachusetts Institute of Technology. Department of Physics
Journal
Nature Physics
Publisher
Springer Science and Business Media LLC
Citation
Baldini, Edoardo et al. “Discovery of the soft electronic modes of the trimeron order in magnetite.” Nature Physics, 16, 5 (January 2020): pages 541–545 © 2020 The Author(s)
Version: Original manuscript
ISSN
1745-2473

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.