Show simple item record

dc.contributor.authorMa, Qiong
dc.contributor.authorGedik, Nuh
dc.contributor.authorFu, Liang
dc.contributor.authorXu, Suyang
dc.date.accessioned2020-11-30T20:06:57Z
dc.date.available2020-11-30T20:06:57Z
dc.date.issued2019-05
dc.date.submitted2019-03
dc.identifier.issn2053-1583
dc.identifier.urihttps://hdl.handle.net/1721.1/128695
dc.description.abstractRotational-symmetry-protected topological crystalline insulators (TCIs) are expected to host unique boundary modes, in that the surface normal to the rotational axis can feature surface states with 'unpinned' Dirac points, which are not constrained to lie on high symmetry points or lines, but can lie at any general k point in the Brillouin zone. Also, as a higher order bulk boundary correspondence is involved here, a three-dimensional (3D) TCI can support one-dimensional (1D) helical edge states. Using first-principles band structure calculations, we identify the van der Waals material-Bi4Br4 as a purely rotation symmetry protected TCI. We show that the surface of Bi4Br4 exhibits a pair of unpinned topological Dirac fermions which are related to the presence of a two-fold rotation axis. These unpinned Dirac fermions possess an exotic spin texture which will be highly favorable for spin transport, and a band structure that consists of van Hove singularities due to a Lifshitz transition. We also identify 1D topological hinge states along the edges of an-Bi4Br4 rod. We comment on how the predicted topological features in-Bi4Br4 could be accessed experimentally.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Science (Grant DE-FG02-07ER46352)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-AC02-05CH11231)en_US
dc.description.sponsorshipUnited States. Department of Energy. Division of Materials Sciences and Engineering (Award DE-SC0018945)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1231319)en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/2053-1583/AB1607en_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceIOP Publishingen_US
dc.titlePurely rotational symmetry-protected topological crystalline insulator α -Bi₄ Br₄en_US
dc.typeArticleen_US
dc.identifier.citationHsu, Chuang-Han et al. “Purely rotational symmetry-protected topological crystalline insulator α -Bi₄ Br₄.” 2D Materials, 6, 3 (May 2019): 031004 © 2019 The Author(s)en_US
dc.contributor.departmentMIT Materials Research Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journal2D Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-10-23T16:49:07Z
dspace.orderedauthorsHsu, C-H; Zhou, X; Ma, Q; Gedik, N; Bansil, A; Pereira, VM; Lin, H; Fu, L; Xu, S-Y; Chang, T-Ren_US
dspace.date.submission2020-10-23T16:49:15Z
mit.journal.volume6en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record