Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/128699.2

Show simple item record

dc.contributor.authorHe, Songtao
dc.contributor.authorBastani, Favyen
dc.contributor.authorBalasingam, Arjun
dc.contributor.authorGopalakrishna, Karthik
dc.contributor.authorJiang, Ziwen
dc.contributor.authorAlizadeh Attar, Mohammadreza
dc.contributor.authorBalakrishnan, Hari
dc.contributor.authorCafarella, Michael J
dc.contributor.authorKraska, Tim
dc.contributor.authorMadden, Samuel R
dc.date.accessioned2020-11-30T22:36:09Z
dc.date.available2020-11-30T22:36:09Z
dc.date.issued2020-06
dc.identifier.isbn9781450379540
dc.identifier.urihttps://hdl.handle.net/1721.1/128699
dc.description.abstractThe rapid development of small aerial drones has enabled numerous drone-based applications, e.g., geographic mapping, air pollution sensing, and search and rescue. To assist the development of these applications, we propose BeeCluster, a drone orchestration system that manages a fleet of drones. BeeCluster provides a virtual drone abstraction that enables developers to express a sequence of geographical sensing tasks, and determines how to map these tasks to the fleet efficiently. BeeCluster's core contribution is predictive optimization, in which an inferred model of the future tasks of the application is used to generate an optimized flight and sensing schedule for the drones that aims to minimize the total expected execution time. We built a prototype of BeeCluster and evaluated it on five real-world case studies with drones in outdoor environments, measuring speedups from 11.6% to 23.9%.en_US
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/3386901.3388912en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleBeeCluster: drone orchestration via predictive optimizationen_US
dc.typeArticleen_US
dc.identifier.citationHe, Songtao et al. "BeeCluster: drone orchestration via predictive optimization." 18th Annual International Conference on Mobile Systems, Applications, and Services, June 2020, Toronto, Canada, Association for Computing Machinery, June 2020. © 2020 ACM.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journal18th Annual International Conference on Mobile Systems, Applications, and Servicesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-11-24T18:25:58Z
dspace.orderedauthorsHe, S; Bastani, F; Balasingam, A; Gopalakrishna, K; Jiang, Z; Alizadeh, M; Balakrishnan, H; Cafarella, M; Kraska, T; Madden, Sen_US
dspace.date.submission2020-11-24T18:26:10Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version