Show simple item record

dc.contributor.authorSchuster, Tal
dc.contributor.authorRam, Ori
dc.contributor.authorBarzilay, Regina
dc.contributor.authorGloberson, Amir
dc.date.accessioned2020-12-02T20:59:53Z
dc.date.available2020-12-02T20:59:53Z
dc.date.issued2019
dc.date.submitted2019
dc.identifier.isbn978-1-950737-13-0
dc.identifier.urihttps://hdl.handle.net/1721.1/128715
dc.description.abstractWe introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.en_US
dc.description.sponsorshipOffice of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) (Contract FA8650-17-C- 9116)en_US
dc.language.isoen
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.18653/V1/N19-1162en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computational Linguisticsen_US
dc.titleCross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsingen_US
dc.typeArticleen_US
dc.identifier.citationSchuster, Tal et al. "Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing." 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2019, Minneapolis, Minnesota, Association for Computational Linguistics, 2019. © 2019 Association for Computational Linguisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologiesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-01T13:18:41Z
dspace.orderedauthorsSchuster, T; Ram, O; Barzilay, R; Globerson, Aen_US
dspace.date.submission2020-12-01T13:18:45Z
mit.journal.volume1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record