MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemical Abundance Signature of J0023+0307: A Second-generation Main-sequence Star with [Fe/H]

Author(s)
Frebel, Anna L.; Ezzeddine, Rana; Chiti, Anirudh
Thumbnail
DownloadPublished version (900.4Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a chemical abundance analysis of the faint halo metal-poor main-sequence star J0023+0307, with [Fe/H] <-6.3, based on a high-resolution (R ∼ 35,000) Magellan/MIKE spectrum. The star was originally found to have [Fe/H] <-6.6 based on a Ca ii K measurement in an R ∼ 2500 spectrum. No iron lines could be detected in our MIKE spectrum. Spectral lines of Li, C, Na, Mg, Al, Si, and Ca were detected. The Li abundance is close to the Spite Plateau, logϵ(Li) = 1.7, not unlike that of other metal-poor stars, although in stark contrast to the extremely low value found, e.g., in HE 1327-2326 at a similar [Fe/H] value. The carbon G-band is detected and indicates strong C-enhancement, as is typical for stars with low Fe abundances. Elements from Na through Si show a strong odd-even effect, and J0023+0307 displays the second-lowest known [Ca/H] abundance. Overall, the abundance pattern of J0023+0307 suggests that it is a second-generation star that formed from gas enriched by a massive Population III first star exploding as a fallback supernova. The inferred dilution mass of the ejecta is 10 5±0.5 M o of hydrogen, strongly suggesting J0023+0307 formed in a recollapsed minihalo. J0023+0307 is likely very old because it has a very eccentric orbit with a pericenter in the Galactic bulge.
Date issued
2019-01
URI
https://hdl.handle.net/1721.1/128722
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Astrophysical Journal
Publisher
American Astronomical Society
Citation
Frebel, Anna et al. “Chemical Abundance Signature of J0023+0307: A Second-generation Main-sequence Star with [Fe/H].” Astrophysical Journal, 871, 2 (January 2019): 146 © 2019 The Author(s)
Version: Final published version
ISSN
0004-637X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.