MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic and living micropropellers for convection-enhanced nanoparticle transport

Author(s)
Schuerle, S; Soleimany, Ava; Yeh, Tiffany; Anand, G. M.; Häberli, M; Fleming, Heather; Mirkhani, N; Qiu, F; Hauert, S; Wang, X; Nelson, BJ; Bhatia, Saurav; ... Show more Show less
Thumbnail
DownloadPublished version (827.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Nanoparticles (NPs) have emerged as an advantageous drug delivery platform for the treatment of various ailments including cancer and cardiovascular and inflammatory diseases. However, their efficacy in shuttling materials to diseased tissue is hampered by a number of physiological barriers. One hurdle is transport out of the blood vessels, compounded by difficulties in subsequent penetration into the target tissue. Here, we report the use of two distinct micropropellers powered by rotating magnetic fields to increase diffusion-limited NP transport by enhancing local fluid convection. In the first approach, we used a single synthetic magnetic microrobot called an artificial bacterial flagellum(ABF), and in the second approach,we used swarms of magnetotactic bacteria (MTB) to create a directable "living ferrofluid" by exploiting ferrohydrodynamics. Both approaches enhance NP transport in a microfluidicmodel of blood extravasation and tissue penetration that consists of microchannels bordered by a collagen matrix.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/128730
Department
Massachusetts Institute of Technology. Institute for Medical Engineering and Science; David H. Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Schuerle, S. et al. "Synthetic and living micropropellers for convection-enhanced nanoparticle transport." Science Advances 5, 4 (April 2019): eaav4803 © 2019 The Authors
Version: Final published version
ISSN
2375-2548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.