Show simple item record

dc.contributor.authorHuggins, Jonathan H.
dc.contributor.authorBroderick, Tamara A
dc.contributor.authorCampbell, Trevor David
dc.date.accessioned2020-12-10T13:36:36Z
dc.date.available2020-12-10T13:36:36Z
dc.date.issued2019-04
dc.date.submitted2019-03
dc.identifier.issn1938-7228
dc.identifier.urihttps://hdl.handle.net/1721.1/128771
dc.description.abstractGaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression, but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-data guarantees on quality. We develop a scalable approach to approximate GP regression, with finite-data guarantees on the accuracy of our pointwise posterior mean and variance estimates. Our main contribution is a novel objective for approximate inference in the nonparametric setting: the preconditioned Fisher (pF) divergence. We show that unlike the Kullback-Leibler divergence (used in variational inference), the pF divergence bounds the 2-Wasserstein distance, which in turn provides tight bounds on the pointwise error of mean and variance estimates. We demonstrate that, for sparse GP likelihood approximations, we can minimize the pF divergence efficiently. Our experiments show that optimizing the pF divergence has the same computational requirements as variational sparse GPs while providing comparable empirical performance-in addition to our novel finite-data quality guarantees.en_US
dc.language.isoen
dc.publisherPMLRen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v89/huggins19a.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleScalable Gaussian process inference with finite-data mean and variance guaranteesen_US
dc.typeArticleen_US
dc.identifier.citationHuggins, Jonathan H. et al. “Scalable Gaussian process inference with finite-data mean and variance guarantees.” Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89 (April 2019): 76-86 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalProceedings of the 22ndInternational Conference on Ar-tificial Intelligence and Statistics (AISTATS)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-03T18:47:01Z
dspace.orderedauthorsHuggins, JH; Campbell, T; Kasprzak, M; Broderick, Ten_US
dspace.date.submission2020-12-03T18:47:06Z
mit.journal.volume89en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record