Show simple item record

dc.contributor.authorDemaine, Erik D
dc.contributor.authorKu, Jason S
dc.date.accessioned2020-12-11T14:31:53Z
dc.date.available2020-12-11T14:31:53Z
dc.date.issued2020-10
dc.identifier.issn0925-7721
dc.identifier.urihttps://hdl.handle.net/1721.1/128811
dc.description.abstractWe study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is strongly NP-complete even if the pieces are all polyominos. On the positive side, we show that the problem can be solved in polynomial time if the number of pieces is a fixed constant.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.COMGEO.2020.101648en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleSymmetric assembly puzzles are hard, beyond a few piecesen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D. et al. “Symmetric assembly puzzles are hard, beyond a few pieces.” Computer methods in applied mechanics and engineering, 90 (October 2020): 101648 © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalComputational Geometry: Theory and Applicationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-09T17:27:36Z
dspace.orderedauthorsDemaine, ED; Korman, M; Ku, JS; Mitchell, JSB; Otachi, Y; van Renssen, A; Roeloffzen, M; Uehara, R; Uno, Yen_US
dspace.date.submission2020-12-09T17:27:42Z
mit.journal.volume90en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record