MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation of acoustic-Brownian noise in nuclear magnetic resonance under non-equilibrium thermal fluctuations

Author(s)
Sinha, Dhiraj
Thumbnail
Downloads41598-020-77206-8.pdf (2.469Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present an analytical study on generation of acoustic-Brownian noise in nuclear magnetic resonance (NMR) induced as a result of thermal fluctuations of the magnetic moments under non-equilibrium thermal interactions which has not been explored independent of Nyquist–Johnson noise until now. The mechanism of physical coupling between non-equilibrium thermal fluctuations and magnetic moments is illustrated using Lighthill’s formulation on suspension dynamics. We discover that unlike Nyquist–Johnson noise which has a uniform spectral density across a range of frequencies, the spectral dependence of acoustic-Brownian noise decreases with an increase in frequency and resembles Brownian noise associated with a particle in a potential well. The results have applications in the field of image enhancement algorithm as well as noise reduction instrumentation in NMR systems.
Date issued
2020-12
URI
https://hdl.handle.net/1721.1/128821
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Scientific Reports
Publisher
Springer Science and Business Media LLC
Citation
Sinha, Dhiraj. "Generation of acoustic-Brownian noise in nuclear magnetic resonance under non-equilibrium thermal fluctuations." Scientific Reports 10, 1 (December 2020): 21406 © 2020 The Author(s)
Version: Final published version
ISSN
2045-2322

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.