Show simple item record

dc.contributor.authorAbulnaga, Sayed Mazdak
dc.contributor.authorAbaci Turk, Esra
dc.contributor.authorBessmeltsev, Mikhail
dc.contributor.authorGrant, P. Ellen
dc.contributor.authorSolomon, Justin
dc.contributor.authorGolland, Polina
dc.date.accessioned2020-12-21T16:10:51Z
dc.date.available2020-12-21T16:10:51Z
dc.date.issued2019-10
dc.identifier.isbn9783030322502
dc.identifier.isbn9783030322519
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/128872
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 11767).en_US
dc.description.abstractWe present a volumetric mesh-based algorithm for flattening the placenta to a canonical template to enable effective visualization of local anatomy and function. Monitoring placental function in vivo promises to support pregnancy assessment and to improve care outcomes. We aim to alleviate visualization and interpretation challenges presented by the shape of the placenta when it is attached to the curved uterine wall. To do so, we flatten the volumetric mesh that captures placental shape to resemble the well-studied ex vivo shape. We formulate our method as a map from the in vivo shape to a flattened template that minimizes the symmetric Dirichlet energy to control distortion throughout the volume. Local injectivity is enforced via constrained line search during gradient descent. We evaluate the proposed method on 28 placenta shapes extracted from MRI images in a clinical study of placental function. We achieve sub-voxel accuracy in mapping the boundary of the placenta to the template while successfully controlling distortion throughout the volume. We illustrate how the resulting mapping of the placenta enhances visualization of placental anatomy and function. Our implementation is freely available at https://github.com/mabulnaga/placenta-flattening.en_US
dc.description.sponsorshipNIH/NIBIB/NAC (Grant P41EB015902)en_US
dc.description.sponsorshipNIH/NICHD (Grant U01HD087211)en_US
dc.description.sponsorshipNSF (Grant IIS-1838071)en_US
dc.description.sponsorshipAir Force Office of Scientific Research (Award FA9550-19-1-0319)en_US
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-32251-9_5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePlacental Flattening via Volumetric Parameterizationen_US
dc.typeBooken_US
dc.identifier.citationAbulnaga, S. Mazdak et al. "Placental Flattening via Volumetric Parameterization." International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 11767, Springer, 2019, 39-47. © 2019 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-16T16:36:43Z
dspace.orderedauthorsAbulnaga, SM; Abaci Turk, E; Bessmeltsev, M; Grant, PE; Solomon, J; Golland, Pen_US
dspace.date.submission2020-12-16T16:36:46Z
mit.journal.volume11767en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record