Show simple item record

dc.contributor.authorZhou, Bingyu
dc.contributor.authorSchwarting, Wilko
dc.contributor.authorRus, Daniela L
dc.contributor.authorAlonso-Mora, Javier
dc.date.accessioned2020-12-21T21:18:26Z
dc.date.available2020-12-21T21:18:26Z
dc.date.issued2018-09
dc.date.submitted2018-05
dc.identifier.isbn9781538630815
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/128883
dc.description.abstractWhen driving in urban environments, an autonomous vehicle must account for the interaction with other traffic participants. It must reason about their future behavior, how its actions affect their future behavior, and potentially consider multiple motion hypothesis. In this paper we introduce a method for joint behavior estimation and trajectory planning that models interaction and multi-policy decision-making. The method leverages Partially Observable Markov Decision Processes to estimate the behavior of other traffic participants given the planned trajectory for the ego-vehicle, and Receding-Horizon Control for generating safe trajectories for the ego-vehicle. To achieve safe navigation we introduce chance constraints over multiple motion policies in the receding-horizon planner. These constraints account for uncertainty over the behavior of other traffic participants. The method is capable of running in real-time and we show its performance and good scalability in simulated multi-vehicle intersection scenarios.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/icra.2018.8461138en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcewebsiteen_US
dc.titleJoint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory Planning for Automated Urban Drivingen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Bingyu et al. "Joint Multi-Policy Behavior Estimation and Receding-Horizon Trajectory Planning for Automated Urban Driving." IEEE International Conference on Robotics and Automation, May 2018, Brisbane, Australia, Institute of Electrical and Electronics Engineers, September 2018. © 2018 IEEEen_US
dc.contributor.departmentMIT Schwarzmann College of Computingen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalIEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-17T15:09:58Z
dspace.date.submission2019-07-17T15:09:59Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record