MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regional Infoveillance of COVID-19 Case Rates: Analysis of Search-Engine Query Patterns

Author(s)
Cousins, Henry C; Cousins, Clara C; Harris, Alon; Pasquale, Louis R
Thumbnail
Downloaddocument(3).pdf (606.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background: Timely allocation of medical resources for coronavirus disease (COVID-19) requires early detection of regional outbreaks. Internet browsing data may predict case outbreaks in local populations that are yet to be confirmed. Objective: We investigated whether search-engine query patterns can help to predict COVID-19 case rates at the state and metropolitan area levels in the United States. Methods: We used regional confirmed case data from the New York Times and Google Trends results from 50 states and 166 county-based designated market areas (DMA). We identified search terms whose activity precedes and correlates with confirmed case rates at the national level. We used univariate regression to construct a composite explanatory variable based on best-fitting search queries offset by temporal lags. We measured the raw and z-transformed Pearson correlation and root-mean-square error (RMSE) of the explanatory variable with out-of-sample case rate data at the state and DMA levels. Results: Predictions were highly correlated with confirmed case rates at the state (mean r=0.69, 95% CI 0.51-0.81; median RMSE 1.27, IQR 1.48) and DMA levels (mean r=0.51, 95% CI 0.39-0.61; median RMSE 4.38, IQR 1.80), using search data available up to 10 days prior to confirmed case rates. They fit case-rate activity in 49 of 50 states and in 103 of 166 DMA at a significance level of .05. Conclusions: Identifiable patterns in search query activity may help to predict emerging regional outbreaks of COVID-19, although they remain vulnerable to stochastic changes in search intensity.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/128949
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Journal of Medical Internet Research
Publisher
JMIR Publications Inc.
Citation
Cousins, Henry C. et al. "Regional Infoveillance of COVID-19 Case Rates: Analysis of Search-Engine Query Patterns." Journal of Medical Internet Research 22, 7 (July 2020): e19483. © 2020 The Authors
Version: Final published version
ISSN
1438-8871

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.