Show simple item record

dc.contributor.authorAllen, William E.
dc.contributor.authorAltae-Tran, Han
dc.contributor.authorBriggs, James
dc.contributor.authorJin, Xin
dc.contributor.authorMcGee, Glen
dc.contributor.authorShi, Andy
dc.contributor.authorRaghavan, Rumya
dc.contributor.authorKamariza, Mireille
dc.contributor.authorNova, Nicole
dc.contributor.authorPereta, Albert
dc.contributor.authorDanford, Chris
dc.contributor.authorKamel, Amine
dc.contributor.authorGothe, Patrik
dc.contributor.authorMilam, Evrhet
dc.contributor.authorAurambault, Jean
dc.contributor.authorPrimke, Thorben
dc.contributor.authorLi, Weijie
dc.contributor.authorInkenbrandt, Josh
dc.contributor.authorHuynh, Tuan
dc.contributor.authorChen, Evan
dc.contributor.authorLee, Christina
dc.contributor.authorCroatto, Michael
dc.contributor.authorBentley, Helen
dc.contributor.authorLu, Wendy
dc.contributor.authorMurray, Robert
dc.contributor.authorTravassos, Mark
dc.contributor.authorCoull, Brent A.
dc.contributor.authorOpenshaw, John
dc.contributor.authorGreene, Casey S.
dc.contributor.authorShalem, Ophir
dc.contributor.authorKing, Gary
dc.contributor.authorProbasco, Ryan
dc.contributor.authorCheng, David R.
dc.contributor.authorSilbermann, Ben
dc.contributor.authorZhang, Feng
dc.contributor.authorLin, Xihong
dc.date.accessioned2021-01-04T22:14:22Z
dc.date.available2021-01-04T22:14:22Z
dc.date.issued2020-08
dc.date.submitted2020-06
dc.identifier.issn2397-3374
dc.identifier.urihttps://hdl.handle.net/1721.1/128952
dc.description.abstractDespite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41562-020-00944-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcemedRxiven_US
dc.titlePopulation-scale longitudinal mapping of COVID-19 symptoms, behaviour and testingen_US
dc.typeArticleen_US
dc.identifier.citationAllen, William E. et al. "Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing." Nature Human Behaviour 4, 9 (August 2020): 972–982 © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalNature Human Behaviouren_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-01-04T19:26:13Z
dspace.orderedauthorsAllen, WE; Altae-Tran, H; Briggs, J; Jin, X; McGee, G; Shi, A; Raghavan, R; Kamariza, M; Nova, N; Pereta, A; Danford, C; Kamel, A; Gothe, P; Milam, E; Aurambault, J; Primke, T; Li, W; Inkenbrandt, J; Huynh, T; Chen, E; Lee, C; Croatto, M; Bentley, H; Lu, W; Murray, R; Travassos, M; Coull, BA; Openshaw, J; Greene, CS; Shalem, O; King, G; Probasco, R; Cheng, DR; Silbermann, B; Zhang, F; Lin, Xen_US
dspace.date.submission2021-01-04T19:26:15Z
mit.journal.volume4en_US
mit.journal.issue9en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record