dc.contributor.author | Allen, William E. | |
dc.contributor.author | Altae-Tran, Han | |
dc.contributor.author | Briggs, James | |
dc.contributor.author | Jin, Xin | |
dc.contributor.author | McGee, Glen | |
dc.contributor.author | Shi, Andy | |
dc.contributor.author | Raghavan, Rumya | |
dc.contributor.author | Kamariza, Mireille | |
dc.contributor.author | Nova, Nicole | |
dc.contributor.author | Pereta, Albert | |
dc.contributor.author | Danford, Chris | |
dc.contributor.author | Kamel, Amine | |
dc.contributor.author | Gothe, Patrik | |
dc.contributor.author | Milam, Evrhet | |
dc.contributor.author | Aurambault, Jean | |
dc.contributor.author | Primke, Thorben | |
dc.contributor.author | Li, Weijie | |
dc.contributor.author | Inkenbrandt, Josh | |
dc.contributor.author | Huynh, Tuan | |
dc.contributor.author | Chen, Evan | |
dc.contributor.author | Lee, Christina | |
dc.contributor.author | Croatto, Michael | |
dc.contributor.author | Bentley, Helen | |
dc.contributor.author | Lu, Wendy | |
dc.contributor.author | Murray, Robert | |
dc.contributor.author | Travassos, Mark | |
dc.contributor.author | Coull, Brent A. | |
dc.contributor.author | Openshaw, John | |
dc.contributor.author | Greene, Casey S. | |
dc.contributor.author | Shalem, Ophir | |
dc.contributor.author | King, Gary | |
dc.contributor.author | Probasco, Ryan | |
dc.contributor.author | Cheng, David R. | |
dc.contributor.author | Silbermann, Ben | |
dc.contributor.author | Zhang, Feng | |
dc.contributor.author | Lin, Xihong | |
dc.date.accessioned | 2021-01-04T22:14:22Z | |
dc.date.available | 2021-01-04T22:14:22Z | |
dc.date.issued | 2020-08 | |
dc.date.submitted | 2020-06 | |
dc.identifier.issn | 2397-3374 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/128952 | |
dc.description.abstract | Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic. | en_US |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/s41562-020-00944-2 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | medRxiv | en_US |
dc.title | Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Allen, William E. et al. "Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing." Nature Human Behaviour 4, 9 (August 2020): 972–982 © 2020 The Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | en_US |
dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
dc.contributor.department | McGovern Institute for Brain Research at MIT | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences | en_US |
dc.relation.journal | Nature Human Behaviour | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2021-01-04T19:26:13Z | |
dspace.orderedauthors | Allen, WE; Altae-Tran, H; Briggs, J; Jin, X; McGee, G; Shi, A; Raghavan, R; Kamariza, M; Nova, N; Pereta, A; Danford, C; Kamel, A; Gothe, P; Milam, E; Aurambault, J; Primke, T; Li, W; Inkenbrandt, J; Huynh, T; Chen, E; Lee, C; Croatto, M; Bentley, H; Lu, W; Murray, R; Travassos, M; Coull, BA; Openshaw, J; Greene, CS; Shalem, O; King, G; Probasco, R; Cheng, DR; Silbermann, B; Zhang, F; Lin, X | en_US |
dspace.date.submission | 2021-01-04T19:26:15Z | |
mit.journal.volume | 4 | en_US |
mit.journal.issue | 9 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Complete | |