MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

InGAN: Capturing and Retargeting the “DNA” of a Natural Image

Author(s)
Shocher, Assaf; Bagon, Shai; Isola, Phillip John; Irani, Michal
Thumbnail
DownloadSubmitted version (9.654Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Generative Adversarial Networks (GANs) typically learn a distribution of images in a large image dataset, and are then able to generate new images from this distribution. However, each natural image has its own internal statistics, captured by its unique distribution of patches. In this paper we propose an ''Internal GAN'' (InGAN) - an image-specific GAN - which trains on a single input image and learns its internal distribution of patches. It is then able to synthesize a plethora of new natural images of significantly different sizes, shapes and aspect-ratios - all with the same internal patch-distribution (same ''DNA'') as the input image. In particular, despite large changes in global size/shape of the image, all elements inside the image maintain their local size/shape. InGAN is fully unsupervised, requiring no additional data other than the input image itself. Once trained on the input image, it can remap the input to any size or shape in a single feedforward pass, while preserving the same internal patch distribution. InGAN provides a unified framework for a variety of tasks, bridging the gap between textures and natural images.
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/128957
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the IEEE International Conference on Computer Vision
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Shocher, Assaf et al. "InGAN: Capturing and Retargeting the “DNA” of a Natural Image." Proceedings of the IEEE International Conference on Computer Vision, October-November 2019, Seoul, South Korea, Institute of Electrical and Electronics Engineers, February 2020. © 2019 IEEE
Version: Original manuscript
ISBN
9781728148038

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.