| dc.contributor.author | Permenter, Frank Noble | |
| dc.contributor.author | Parrilo, Pablo A. | |
| dc.date.accessioned | 2021-01-06T14:59:03Z | |
| dc.date.available | 2021-01-06T14:59:03Z | |
| dc.date.issued | 2019-03 | |
| dc.date.submitted | 2016-12 | |
| dc.identifier.issn | 1436-4646 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/129071 | |
| dc.description.abstract | We propose a new method for simplifying semidefinite programs (SDP) inspired by symmetry reduction. Specifically, we show if an orthogonal projection map satisfies certain invariance conditions, restricting to its range yields an equivalent primal–dual pair over a lower-dimensional symmetric cone—namely, the cone-of-squares of a Jordan subalgebra of symmetric matrices. We present a simple algorithm for minimizing the rank of this projection and hence the dimension of this subalgebra. We also show that minimizing rank optimizes the direct-sum decomposition of the algebra into simple ideals, yielding an optimal “block-diagonalization” of the SDP. Finally, we give combinatorial versions of our algorithm that execute at reduced computational cost and illustrate effectiveness of an implementation on examples. Through the theory of Jordan algebras, the proposed method easily extends to linear and second-order-cone programming and, more generally, symmetric cone optimization. | en_US |
| dc.publisher | Springer Berlin Heidelberg | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.1007/s10107-019-01372-5 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | Springer Berlin Heidelberg | en_US |
| dc.title | Dimension reduction for semidefinite programs via Jordan algebras | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Permenter, Frank and Pablo A. Parrilo, "Dimension reduction for semidefinite programs via Jordan algebras." Mathematical Programming 181, 1 (March 2019): 51–84 doi. 10.1007/s10107-019-01372-5 ©2019 Authors | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.relation.journal | Mathematical Programming | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2020-09-24T21:02:25Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society | |
| dspace.embargo.terms | Y | |
| dspace.date.submission | 2020-09-24T21:02:25Z | |
| mit.journal.volume | 181 | en_US |
| mit.journal.issue | 1 | en_US |
| mit.license | OPEN_ACCESS_POLICY | |
| mit.metadata.status | Complete | |