Show simple item record

dc.contributor.authorPermenter, Frank Noble
dc.contributor.authorParrilo, Pablo A.
dc.date.accessioned2021-01-06T14:59:03Z
dc.date.available2021-01-06T14:59:03Z
dc.date.issued2019-03
dc.date.submitted2016-12
dc.identifier.issn1436-4646
dc.identifier.urihttps://hdl.handle.net/1721.1/129071
dc.description.abstractWe propose a new method for simplifying semidefinite programs (SDP) inspired by symmetry reduction. Specifically, we show if an orthogonal projection map satisfies certain invariance conditions, restricting to its range yields an equivalent primal–dual pair over a lower-dimensional symmetric cone—namely, the cone-of-squares of a Jordan subalgebra of symmetric matrices. We present a simple algorithm for minimizing the rank of this projection and hence the dimension of this subalgebra. We also show that minimizing rank optimizes the direct-sum decomposition of the algebra into simple ideals, yielding an optimal “block-diagonalization” of the SDP. Finally, we give combinatorial versions of our algorithm that execute at reduced computational cost and illustrate effectiveness of an implementation on examples. Through the theory of Jordan algebras, the proposed method easily extends to linear and second-order-cone programming and, more generally, symmetric cone optimization.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s10107-019-01372-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDimension reduction for semidefinite programs via Jordan algebrasen_US
dc.typeArticleen_US
dc.identifier.citationPermenter, Frank and Pablo A. Parrilo, "Dimension reduction for semidefinite programs via Jordan algebras." Mathematical Programming 181, 1 (March 2019): 51–84 doi. 10.1007/s10107-019-01372-5 ©2019 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:02:25Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:02:25Z
mit.journal.volume181en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record