Show simple item record

dc.contributor.authorBi, Sheng
dc.contributor.authorBanda, Harish
dc.contributor.authorChen, Ming
dc.contributor.authorNiu, Liang
dc.contributor.authorChen, Mingyu
dc.contributor.authorWu, Taizheng
dc.contributor.authorWang, Jiasheng
dc.contributor.authorWang, Runxi
dc.contributor.authorFeng, Jiamao
dc.contributor.authorChen, Tianyang
dc.contributor.authorDinca, Mircea
dc.contributor.authorKornyshev, Alexei A.
dc.contributor.authorFeng, Guang
dc.date.accessioned2021-01-06T21:45:30Z
dc.date.available2021-01-06T21:45:30Z
dc.date.issued2020-02
dc.date.submitted2019-02
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttps://hdl.handle.net/1721.1/129325
dc.description.abstractWe performed constant-potential molecular dynamics simulations to analyse the double-layer structure and capacitive performance of supercapacitors composed of conductive metal–organic framework (MOF) electrodes and ionic liquids. The molecular modelling clarifies how ions transport and reside inside polarized porous MOFs, and then predicts the corresponding potential-dependent capacitance in characteristic shapes. The transmission line model was adopted to characterize the charging dynamics, which further allowed evaluation of the capacitive performance of this class of supercapacitors at the macroscale from the simulation-obtained data at the nanoscale. These ‘computational microscopy’ results were supported by macroscopic electrochemical measurements. Such a combined nanoscale-to-macroscale investigation demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. It gives molecular insights into preferred structures of MOFs for accomplishing consistent performance with optimal energy–power balance, providing a blueprint for future characterization and design of these new supercapacitor systems.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41563-019-0598-7en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Dinca via Ye Lien_US
dc.titleMolecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytesen_US
dc.typeArticleen_US
dc.identifier.citationBi, Sheng et al. "Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes." Nature Materials 19, 5 (February 2020): 552–558. © 2020 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-10-21T14:29:24Z
dspace.orderedauthorsBi, S; Banda, H; Chen, M; Niu, L; Chen, M; Wu, T; Wang, J; Wang, R; Feng, J; Chen, T; Dincă, M; Kornyshev, AA; Feng, Gen_US
dspace.date.submission2020-10-21T14:29:31Z
mit.journal.volume19en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record