Show simple item record

dc.contributor.authorLiu, Ge
dc.contributor.authorZeng, Haoyang
dc.contributor.authorMueller, Jonas Weylin
dc.contributor.authorCarter, Brandon M.
dc.contributor.authorWang, Ziheng
dc.contributor.authorSchilz, Jonas
dc.contributor.authorHorny, Geraldine
dc.contributor.authorBirnbaum, Michael E
dc.contributor.authorEwert, Stefan
dc.contributor.authorGifford, David K
dc.date.accessioned2021-01-07T22:12:52Z
dc.date.available2021-01-07T22:12:52Z
dc.date.issued2019-11
dc.date.submitted2019-10
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.urihttps://hdl.handle.net/1721.1/129332
dc.description.abstractMotivation: The precise targeting of antibodies and other protein therapeutics is required for their proper function and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown and randomized methods are used to design antibodies without a model that relates antibody sequence to desired properties. Results: Here, we present Ens-Grad, a machine learning method that can design complementarity determining regions of human Immunoglobulin G antibodies with target affinities that are superior to candidates derived from phage display panning experiments. We also demonstrate that machine learning can improve target specificity by the modular composition of models from different experimental campaigns, enabling a new integrative approach to improving target specificity. Our results suggest a new path for the discovery of therapeutic molecules by demonstrating that predictive and differentiable models of antibody binding can be learned from high-throughput experimental data without the need for target structural data.en_US
dc.description.sponsorshipNational Institutes of Health (Grant R01CA218094)en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/btz895en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceOxford University Pressen_US
dc.titleAntibody complementarity determining region design using high-capacity machine learningen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Ge et al. "Antibody complementarity determining region design using high-capacity machine learning." Bioinformatics 36, 7 (November 2019): 2126–2133 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalBioinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-12-15T17:22:50Z
dspace.orderedauthorsLiu, G; Zeng, H; Mueller, J; Carter, B; Wang, Z; Schilz, J; Horny, G; Birnbaum, ME; Ewert, S; Gifford, DKen_US
dspace.date.submission2020-12-15T17:23:03Z
mit.journal.volume36en_US
mit.journal.issue7en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record