Show simple item record

dc.contributor.authorIglesias Gonzalez, Juan Eugenio
dc.contributor.authorVan Leemput, Koen
dc.contributor.authorGolland, Polina
dc.contributor.authorYendiki, Anastasia
dc.date.accessioned2021-01-08T14:30:04Z
dc.date.available2021-01-08T14:30:04Z
dc.date.issued2019-05
dc.identifier.isbn9783030203504
dc.identifier.isbn9783030203511
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/129338
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 11492).en_US
dc.description.abstractSegmentation of structural and diffusion MRI (sMRI/dMRI) is usually performed independently in neuroimaging pipelines. However, some brain structures (e.g., globus pallidus, thalamus and its nuclei) can be extracted more accurately by fusing the two modalities. Following the framework of Bayesian segmentation with probabilistic atlases and unsupervised appearance modeling, we present here a novel algorithm to jointly segment multi-modal sMRI/dMRI data. We propose a hierarchical likelihood term for the dMRI defined on the unit ball, which combines the Beta and Dimroth-Scheidegger-Watson distributions to model the data at each voxel. This term is integrated with a mixture of Gaussians for the sMRI data, such that the resulting joint unsupervised likelihood enables the analysis of multi-modal scans acquired with any type of MRI contrast, b-values, or number of directions, which enables wide applicability. We also propose an inference algorithm to estimate the maximum-a-posteriori model parameters from input images, and to compute the most likely segmentation. Using a recently published atlas derived from histology, we apply our method to thalamic nuclei segmentation on two datasets: HCP (state of the art) and ADNI (legacy) – producing lower sample sizes than Bayesian segmentation with sMRI alone.en_US
dc.description.sponsorshipNIH (Grants R21AG050122, P41EB015902)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-20351-1_60en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleJoint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlasesen_US
dc.typeBooken_US
dc.identifier.citationIglesias, Juan Eugenio et al. "Joint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlases." IPMI 2019: Information Processing in Medical Imaging, Lecture Notes in Computer Science, 11492, Springer International Publishing, 2019, 767-779. © 2019 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-15T19:25:51Z
dspace.orderedauthorsIglesias, JE; Van Leemput, K; Golland, P; Yendiki, Aen_US
dspace.date.submission2020-12-15T19:25:57Z
mit.journal.volume11492en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record