MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Patient risk stratification for hospital-associated C. diff as a time-series classification task

Author(s)
Wiens, Jenna Anne Marleau; Guttag, John V; Horvitz, Eric
Thumbnail
DownloadPublished version (500.0Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A patient's risk for adverse events is affected by temporal processes including the nature and timing of diagnostic and therapeutic activities, and the overall evolution of the patient's pathophysiology over time. Yet many investigators ignore this temporal aspect when modeling patient outcomes, considering only the patient's current or aggregate state. In this paper, we represent patient risk as a time series. In doing so, patient risk stratification becomes a time-series classification task. The task differs from most applications of time-series analysis, like speech processing, since the time series itself must first be extracted. Thus, we begin by defining and extracting approximate risk processes, the evolving approximate daily risk of a patient. Once obtained, we use these signals to explore different approaches to time-series classification with the goal of identifying high-risk patterns. We apply the classification to the specific task of identifying patients at risk of testing positive for hospital acquired Clostridium difficile. We achieve an area under the receiver operating characteristic curve of 0.79 on a held-out set of several hundred patients. Our two-stage approach to risk stratification outperforms classifiers that consider only a patient's current state (p<0.05).
Date issued
2012
URI
https://hdl.handle.net/1721.1/129391
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Advances in Neural Information Processing Systems 25 (NIPS 2012)
Publisher
Neural Information Processing Systems Foundation, Inc
Citation
Wiens, Jenna et al. "Patient risk stratification for hospital-associated C. diff as a time-series classification task."Advances in Neural Information Processing Systems 25 (NIPS 2012), December 2012, Lake Tahoe, Nevada, Neural Information Processing Systems Foundation, 2012.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.