MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Space and time efficient kernel density estimation in high dimensions

Author(s)
Indyk, Piotr; Wagner, Tal
Thumbnail
DownloadPublished version (693.3Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Recently, Charikar and Siminelakis (2017) presented a framework for kernel density estimation in provably sublinear query time, for kernels that possess a certain hashing-based property. However, their data structure requires a significantly increased super-linear storage space, as well as super-linear preprocessing time. These limitations inhibit the practical applicability of their approach on large datasets. In this work, we present an improvement to their framework that retains the same query time, while requiring only linear space and linear preprocessing time. We instantiate our framework with the Laplacian and Exponential kernels, two popular kernels which possess the aforementioned property. Our experiments on various datasets verify that our approach attains accuracy and query time similar to Charikar and Siminelakis (2017), with significantly improved space and preprocessing time.
Date issued
2019-12
URI
https://hdl.handle.net/1721.1/129407
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Neural Information Processing Systems
Publisher
Morgan Kaufmann Publishers
Citation
Backurs, Arturs et al. “Space and time efficient kernel density estimation in high dimensions.” Advances in Neural Information Processing Systems, 32 (December 2019) © 2019 The Author(s)
Version: Final published version
ISSN
1049-5258

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.