MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable fair clustering

Author(s)
Indyk, Piotr; Onak, Krzysztof; Vakilian, Ali; Wagner, Tal
Thumbnail
DownloadAccepted version (1.667Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We study the fair variant of the classic k-median problem introduced by Chierichetti et al. (Chierichetti et al., 2017) in which the points are colored, and the goal is to minimize the same average distance objective as in the standard k-median problem while ensuring that all clusters have an "approximately equal" number of points of each color. Chierichetti et al. proposed a two-phase algorithm for fair k-clustering. In the first step, the pointset is partitioned into subsets called fairlets that satisfy the fairness requirement and approximately preserve the k-median objective. In the second step, fairlets are merged into k clusters by one of the existing k-median algorithms. The running time of this algorithm is dominated by the first step, which takes super-quadratic time. In this paper, we present a practical approximate fairlet decomposition algorithm that runs in nearly linear time.
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/129421
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
36th International Conference on Machine Learning, ICML 2019
Publisher
International Machine Learning Society
Citation
Backurs, Arturs et al. “Scalable fair clustering.” Paper presented at the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, June 10, 2019 - June 15, 2019, International Machine Learning Society © 2019 The Author(s)
Version: Author's final manuscript
ISSN
2640-3498

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.