Show simple item record

dc.contributor.authorFeffer, Michael
dc.contributor.authorRudovic, Ognjen
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2021-01-21T17:12:11Z
dc.date.available2021-01-21T17:12:11Z
dc.date.issued2018-07
dc.identifier.isbn9783319961323
dc.identifier.isbn9783319961330
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/129494
dc.description.abstractWe investigate the personalization of deep convolutional neural networks for facial expression analysis from still images. While prior work has focused on population-based (“one-size-fits-all”) approaches, we formulate and construct personalized models via a mixture of experts and supervised domain adaptation approach, showing that it improves greatly upon non-personalized models. Our experiments demonstrate the ability of the model personalization to quickly and effectively adapt to limited amounts of target data. We also provide a novel training methodology and architecture for creating personalized machine learning models for more effective analysis of emotion state.en_US
dc.description.sponsorshipEuropean Union (Grant H2020)en_US
dc.description.sponsorshipMarie Curie Action (Award 701236)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-96133-0_24en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA Mixture of Personalized Experts for Human Affect Estimationen_US
dc.typeBooken_US
dc.identifier.citationFeffer, Michael et al. "A Mixture of Personalized Experts for Human Affect Estimation." MLDM 2018: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, 10935, Springer International Publishing, 2018, 316-330. © 2018 Springer International Publishing AGen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-08-02T14:53:31Z
dspace.date.submission2019-08-02T14:53:32Z
mit.journal.volume10935en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record