dc.contributor.author | Feffer, Michael | |
dc.contributor.author | Rudovic, Ognjen | |
dc.contributor.author | Picard, Rosalind W. | |
dc.date.accessioned | 2021-01-21T17:12:11Z | |
dc.date.available | 2021-01-21T17:12:11Z | |
dc.date.issued | 2018-07 | |
dc.identifier.isbn | 9783319961323 | |
dc.identifier.isbn | 9783319961330 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/129494 | |
dc.description.abstract | We investigate the personalization of deep convolutional neural networks for facial expression analysis from still images. While prior work has focused on population-based (“one-size-fits-all”) approaches, we formulate and construct personalized models via a mixture of experts and supervised domain adaptation approach, showing that it improves greatly upon non-personalized models. Our experiments demonstrate the ability of the model personalization to quickly and effectively adapt to limited amounts of target data. We also provide a novel training methodology and architecture for creating personalized machine learning models for more effective analysis of emotion state. | en_US |
dc.description.sponsorship | European Union (Grant H2020) | en_US |
dc.description.sponsorship | Marie Curie Action (Award 701236) | en_US |
dc.language.iso | en | |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-319-96133-0_24 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | A Mixture of Personalized Experts for Human Affect Estimation | en_US |
dc.type | Book | en_US |
dc.identifier.citation | Feffer, Michael et al. "A Mixture of Personalized Experts for Human Affect Estimation." MLDM 2018: Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, 10935, Springer International Publishing, 2018, 316-330. © 2018 Springer International Publishing AG | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Media Laboratory | en_US |
dc.relation.journal | Lecture Notes in Computer Science | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2019-08-02T14:53:31Z | |
dspace.date.submission | 2019-08-02T14:53:32Z | |
mit.journal.volume | 10935 | en_US |
mit.metadata.status | Complete | |