MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces

Author(s)
Dalca, Adrian Vasile; Balakrishnan, Guha; Guttag, John V
Thumbnail
DownloadAccepted version (2.522Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Classical deformable registration techniques achieve impressive results and offer a rigorous theoretical treatment, but are computationally intensive since they solve an optimization problem for each image pair. Recently, learning-based methods have facilitated fast registration by learning spatial deformation functions. However, these approaches use restricted deformation models, require supervised labels, or do not guarantee a diffeomorphic (topology-preserving) registration. Furthermore, learning-based registration tools have not been derived from a probabilistic framework that can offer uncertainty estimates. In this paper, we build a connection between classical and learning-based methods. We present a probabilistic generative model and derive an unsupervised learning-based inference algorithm that uses insights from classical registration methods and makes use of recent developments in convolutional neural networks (CNNs). We demonstrate our method on a 3D brain registration task for both images and anatomical surfaces, and provide extensive empirical analyses of the algorithm. Our principled approach results in state of the art accuracy and very fast runtimes, while providing diffeomorphic guarantees. Our implementation is available online at http://voxelmorph.csail.mit.edu.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/129526
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Medical Image Analysis
Publisher
Elsevier BV
Citation
Dalca, Adrian V. et al. “Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces.” Medical Image Analysis, 57 (October 2019): 226-236 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
1361-8415

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.