MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised Deep Learning for Bayesian Brain MRI Segmentation

Author(s)
Dalca, Adrian Vasile; Golland, Polina; Iglesias Gonzalez, Juan Eugenio
Thumbnail
DownloadAccepted version (778.8Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Probabilistic atlas priors have been commonly used to derive adaptive and robust brain MRI segmentation algorithms. Widely-used neuroimage analysis pipelines rely heavily on these techniques, which are often computationally expensive. In contrast, there has been a recent surge of approaches that leverage deep learning segmentation tools that are computationally efficient at test time. However, most of these strategies rely on supervised learning from manually annotated images and are therefore sensitive to the intensity profiles in the training dataset. A deep learning-based segmentation model for a new image dataset (e.g., of different contrast), usually requires a new labeled training dataset, which can be prohibitively expensive, or suboptimal ad hoc adaptation or augmentation approaches. In this paper, we propose an alternative strategy that combines conventional probabilistic atlas-based segmentation with deep learning, enabling training of a segmentation model for new MRI scans without the need for any manually segmented images. Our experiments include thousands of brain MRI scans and demonstrate that the proposed method achieves good accuracy for a brain MRI segmentation task for different MRI contrasts, requiring only approximately 15 s at test time on a GPU.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/129557
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Lecture Notes in Computer Science
Publisher
Springer International Publishing
Citation
Dalca,Adrian V. et al. “Unsupervised Deep Learning for Bayesian Brain MRI Segmentation.” MICCAI 2019: Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science, 11766, Springer, October 2019, 356–365. © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0302-9743

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.