Show simple item record

dc.contributor.authorXu, Junshen
dc.contributor.authorZhang, Molin
dc.contributor.authorTurk, Esra Abaci
dc.contributor.authorZhang, Larry
dc.contributor.authorGrant, P. Ellen
dc.contributor.authorYing, Kui
dc.contributor.authorGolland, Polina
dc.contributor.authorAdalsteinsson, Elfar
dc.date.accessioned2021-01-26T15:59:39Z
dc.date.available2021-01-26T15:59:39Z
dc.date.issued2019-10
dc.identifier.isbn9783030322502
dc.identifier.isbn9783030322519
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/129568
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 11767)en_US
dc.description.abstractThe performance and diagnostic utility of magnetic resonance imaging (MRI) in pregnancy is fundamentally constrained by fetal motion. Motion of the fetus, which is unpredictable and rapid on the scale of conventional imaging times, limits the set of viable acquisition techniques to single-shot imaging with severe compromises in signal-to-noise ratio and diagnostic contrast, and frequently results in unacceptable image quality. Surprisingly little is known about the characteristics of fetal motion during MRI and here we propose and demonstrate methods that exploit a growing repository of MRI observations of the gravid abdomen that are acquired at low spatial resolution but relatively high temporal resolution and over long durations (10–30 min). We estimate fetal pose per frame in MRI volumes of the pregnant abdomen via deep learning algorithms that detect key fetal landmarks. Evaluation of the proposed method shows that our framework achieves quantitatively an average error of 4.47 mm and 96.4% accuracy (with error less than 10 mm). Fetal pose estimation in MRI time series yields novel means of quantifying fetal movements in health and disease, and enables the learning of kinematic models that may enhance prospective mitigation of fetal motion artifacts during MRI acquisition.en_US
dc.description.sponsorshipNIH (Grants U01HD087211, R01EB01733, NIBIB NAC P41EB015902 and NICHD U01HD087211)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-32251-9_44en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFetal Pose Estimation in Volumetric MRI Using a 3D Convolution Neural Networken_US
dc.typeBooken_US
dc.identifier.citationXu, Junshen et al. "Fetal Pose Estimation in Volumetric MRI Using a 3D Convolution Neural Network." MICCAI: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 11767, Springer, 2019, 403-410. © 2019 Springer Nature Switzerland AGen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-11-20T17:30:05Z
dspace.orderedauthorsXu, J; Zhang, M; Turk, EA; Zhang, L; Grant, PE; Ying, K; Golland, P; Adalsteinsson, Een_US
dspace.date.submission2020-11-20T17:30:09Z
mit.journal.volume11767en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record