MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photon-photon interactions in dynamically coupled cavities

Author(s)
Heuck, Mikkel; Englund, Dirk R.
Thumbnail
DownloadPublished version (1.113Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study theoretically the interaction between two photons in a nonlinear cavity. The photons are absorbed into the cavity by an effective tuning of its input-output coupling via external control of a coupling to a second, strongly output-coupled cavity mode. Such "dynamically coupled" cavities, which can be implemented using bulk χ(2) and χ(3) nonlinearities, enable incoming photon wave packets to be absorbed into the cavity with high fidelity when the duration of the control is similar to that of the wave packets. Further, this configuration can be used to avoid limitations in the photon-photon interaction time set by the delay-bandwidth product of passive cavities and enables the elimination of wave-packet distortions caused by dispersive cavity transmission and reflection. We consider three kinds of nonlinearities, two arising from χ(2) and χ(3) materials and one due to an interaction with a two-level emitter. To analyze the input and output of few-photon wave packets, we use a Schrödinger-picture formalism in which traveling-wave fields are discretized into infinitesimal time bins. We suggest that dynamically coupled cavities provide a very useful tool for improving the performance of quantum devices relying on cavity-enhanced light-matter interactions such as single-photon sources and atomlike quantum memories with photon interfaces. As an example, we present simulation results showing that high-fidelity two-qubit entangling gates may be constructed using any of the considered nonlinear interactions.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/129610
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review A
Publisher
American Physical Society (APS)
Citation
Heuck, Mikkel et al. “Photon-photon interactions in dynamically coupled cavities.” Physical Review A, 101, 4 (April 2020): 2469-9926 © 2020 The Author(s)
Version: Final published version
ISSN
2469-9934
2469-9926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.