MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities

Author(s)
Heuck, Mikkel; Englund, Dirk R.
Thumbnail
DownloadPublished version (639.9Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We show that relatively simple integrated photonic circuits have the potential to realize a high fidelity deterministic controlled-phase gate between photonic qubits using bulk optical nonlinearities. The gate is enabled by converting travelling continuous-mode photons into stationary cavity modes using strong classical control fields that dynamically change the effective cavity-waveguide coupling rate. This architecture succeeds because it reduces the wave packet distortions that otherwise accompany the action of optical nonlinearities [J. Shapiro, Phys. Rev. A 73, 062305 (2006)PLRAAN1050-294710.1103/PhysRevA.73.062305; J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)PLRAAN1050-294710.1103/PhysRevA.81.043823]. We show that high-fidelity gates can be achieved with self-phase modulation in χ(3) materials as well as second-harmonic generation in χ(2) materials. The gate fidelity asymptotically approaches unity with increasing storage time for an incident photon wave packet with fixed duration. We also show that dynamically coupled cavities enable a trade-off between errors due to loss and wave packet distortion. Our proposed architecture represents a new approach to practical implementation of quantum gates that is roomerature compatible and only relies on components that have been individually demonstrated.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/129612
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Physical Review Letters
Publisher
American Physical Society (APS)
Citation
Heuc, Mikkel et al. “Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities.” Physical Review Letters, 124, 16 (April 2020): 160501 © 2020 The Author(s)
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.