Show simple item record

dc.contributor.authorArvidsson Shukur, David Roland
dc.contributor.authorHarris, Nicholas Christopher
dc.contributor.authorPrabhu, Mihika
dc.contributor.authorCarolan, Jacques J
dc.contributor.authorEnglund, Dirk R.
dc.date.accessioned2021-02-02T11:38:41Z
dc.date.available2021-02-02T11:38:41Z
dc.date.issued2019-07
dc.date.submitted2018-10
dc.identifier.issn2056-6387
dc.identifier.urihttps://hdl.handle.net/1721.1/129618
dc.description.abstractIn standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.en_US
dc.description.sponsorshipUnited States. Air Force Research Laboratory. RITA program (Grant FA8750-14-2-0120)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41534-019-0179-2en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleTrace-free counterfactual communication with a nanophotonic processoren_US
dc.typeArticleen_US
dc.identifier.citationCalafell, I. Alonso et al. “Trace-free counterfactual communication with a nanophotonic processor.” npj Quantum Information, 5, 1 (July 2019): 61 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalnpj Quantum Informationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-12-14T18:18:27Z
dspace.orderedauthorsAlonso Calafell, I; Strömberg, T; Arvidsson-Shukur, DRM; Rozema, LA; Saggio, V; Greganti, C; Harris, NC; Prabhu, M; Carolan, J; Hochberg, M; Baehr-Jones, T; Englund, D; Barnes, CHW; Walther, Pen_US
dspace.date.submission2020-12-14T18:18:35Z
mit.journal.volume5en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record