Show simple item record

dc.contributor.authorSteinbrecher, Gregory R.
dc.contributor.authorEnglund, Dirk R.
dc.contributor.authorCarolan, Jacques J
dc.date.accessioned2021-02-02T13:26:14Z
dc.date.available2021-02-02T13:26:14Z
dc.date.issued2019-07
dc.date.submitted2019-03
dc.identifier.issn0219-7499
dc.identifier.urihttps://hdl.handle.net/1721.1/129621
dc.description.abstractPhysically motivated quantum algorithms for specific near-term quantum hardware will likely be the next frontier in quantum information science. Here, we show how many of the features of neural networks for machine learning can naturally be mapped into the quantum optical domain by introducing the quantum optical neural network (QONN). Through numerical simulation and analysis we train the QONN to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation, and one-way quantum repeaters. We consistently demonstrate that our system can generalize from only a small set of training data onto inputs for which it has not been trained. Our results indicate that QONNs are a powerful design tool for quantum optical systems and, leveraging advances in integrated quantum photonics, a promising architecture for next-generation quantum processors.en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative Optimal Measurements for ScalableQuantum Technologies (Grant FA9550-14-1-0052)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (Grant FA9550-16-1-0391)en_US
dc.description.sponsorshipEuropean Commission. Framework Programme for Research and Innovation. Marie Sklodowska-Curie Actions (Grant 751016)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41534-019-0174-7en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleQuantum optical neural networksen_US
dc.typeArticleen_US
dc.identifier.citationSteinbrecher, Gregory R. et al. “Quantum optical neural networks.” npj Quantum Information, 5, 1 (July 2019): 60 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalnpj Quantum Informationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-12-14T17:57:54Z
dspace.orderedauthorsSteinbrecher, GR; Olson, JP; Englund, D; Carolan, Jen_US
dspace.date.submission2020-12-14T17:57:57Z
mit.journal.volume5en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record