MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radioisotope Thermophotovoltaic Generator Design Methods and Performance Estimates for Space Missions

Author(s)
Wang, Xiawa; Liang, Renrong; Fisher, Peter H; Chan, Walker R; Xu, Jun
Thumbnail
DownloadAccepted version (1.696Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This work provides the design methodology of a radioisotope thermophotovoltaic system (RTPV) using spectral control for space missions. The focus is on the feasibility of a practical system by using two-dimensional micropatterned photonic crystal emitters, selecting the proper thermophotovoltaic cell and insulation material to exclude material incompatibilities, to optimize the system efficiency by impedance matching and to design a radiator with minimum mass. In the last section, a design example is presented based on the tested indium gallium arsenide antimonide (InGaAsSb) cells. It is shown computationally that, in using the experimentally tested InGaAsSb cells, the RTPV generator is expected to reach an efficiency of 8.6% and a specific power of 10.1 W∕kg with advanced radiators. Using the more efficient InGaAs cells, the system can expect to triple the figure of merits of the radioisotope thermoelectric generator, promising to reach ∼18% and 21 W∕kg, respectively. With a high performance device, the results of this work can lead to a functional prototype for further research focusing on manufacturability and reliability.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/129630
Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Journal
Journal of Propulsion and Power
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Citation
Wang, Xiawa et al. "Radioisotope Thermophotovoltaic Generator Design Methods and Performance Estimates for Space Missions." Journal of Propulsion and Power 36, 4 (July 2020): dx.doi.org/10.2514/1.b37623 © 2020 American Institute of Aeronautics and Astronautics
Version: Author's final manuscript
ISSN
1533-3876

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.