Numerical Simulation for Rock Fracture Viscoelastic Creep under Dry Conditions
Author(s)
Kang, Hao; Einstein, Herbert H; Brown, Stephen
DownloadGEOFLUIDS.2020.8879890.pdf (4.582Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
In many rock engineering projects such as hydrocarbon extraction and geothermal energy utilization, the hydraulic and mechanical behavior of rock fractures significantly affects the safety and profitability of the project. In field conditions, the hydraulic and mechanical behavior of rock fractures changes with time (the rock fractures creep), and this creep is not negligible even under dry conditions. In addition, creep is strongly affected by the rock fracture surface geometry. However, there is not much literature systematically studying the effect of surface geometry on rock fracture creep under dry conditions. This paper presents the results of a numerical study considering the effect of surface geometry on rough fracture viscoelastic deformations. An in-house numerical code has been developed to simulate the viscoelastic deformation of rough fractures. In addition, another numerical code has been developed to generate synthetic rough fracture surfaces by systematically changing the surface roughness parameters: the Hurst exponent, mismatch length, and root mean square roughness. The results indicate that by increasing the Hurst exponent or decreasing the mismatch length or decreasing the root mean square roughness, the fracture mean aperture decreases, and the contact ratio (number of contacting cells/total number of cells) increases faster with time.
Date issued
2020-12-10Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Geofluids
Publisher
Hindawi
Citation
Kang, Hao et al. “Numerical Simulation for Rock Fracture Viscoelastic Creep under Dry Conditions.” Geofluids, 2020 (December 2020): 8879890 © 2020 The Author(s)
Version: Final published version
ISSN
1468-8115
Collections
The following license files are associated with this item: